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A New Method for Recognizing Quadric Surfaces from Range Data and

Its Application to Telerobotics and Automation

(final phase)

by

Nicolas Alvertos*, Ivan D'Cunha**, and Roland Mielke***

Abstract

In the final phase of the proposed research a complete top to down three dimen-

sional object recognition scheme has been proposed. The various three dimensional

objects included spheres, cones, cylinders, ellipsoids, paraboloids, and hyperboloids.

Utilizing a newly developed blob determination technique, a given range scene with

several non-cluttered quadric surfaces is segmented. Next, using the earlier (phase 1)

developed alignment scheme, each of the segmented objects are then aligned in a

desired coordinate system. For each of the quadric surfaces based upon their intersec-

tions with certain pre-determined planes, a set of distinct features (curves) are

obtained. A database with entities such as the equations of the planes and angular

bounds of these planes has been created for each of the quadric surfaces. Real range

data of spheres, cones, cylinders, and parallelepipeds have been utilized for the recog-

nition process. The developed algorithm gave excellent results for the real data as

well as for several sets of simulated range data.
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1. INTRODUCTION

One of the most important tasks in computer vision is that of three-dimensional

object recognition. Unlike the recognition procedure developed for intensity-based

images, the recent development of active and passive sensors extracting quality range

information has led to the involvement of explicit geometric representations of the

objects for the recognition schemes [1,2]. Location and description of three-

dimensional objects from natural light images are often difficult to determine. How-

ever, range images give a more detailed and direct geometric description of the shape

of the three-dimensional object.

The laser range-finder makes use of a laser beam which scans the surfaces in the

scene of observation from left to right and top to bottom. Thus the distances obtained

measure both depth and scanning angle. The principle of triangulation is often utilized

to obtain the three-dimensional coordinate of each pixel. Unless a specific algorithm

demands a special form of the range images, it is usually this depth information which

is utilized for the recognition process. Active triangulation techniques use an extra

source of light to project some pattern onto the objects to be measured, thereby reduc-

ing complexity of the stereo matching problem [3,4]. Many industrial and navigational

robotic tasks such as target identification and tracking, automated assembly, bin pick-

ing, mobile robots, etc., will be better accomplished if such explicit depth information

can be efficiently obtained and accurately interpreted.

1.1 Objectives and Organization of the Report

An approach based on two-dimensional analytic geometry to recognize a series of

three-dimensional surfaces is presented in this research. Among the various three-

dimensional surfaces considered are the hyperboloids of one and two sheets, ellipsoids,

spheres, circular and elliptical quadric cones, circular and elliptical cylinders, parabolic

and hyperbolic cylinders, elliptic and hyperbolic paraboloids, and parallelepipeds.



The difficulties in recognizing three-dimensional surfaces stems from the com-

plexity of the scene, the number of surfaces in the database and the lack of a priori

information about the scene. Techniques vary based upon the difficulty of the recogni-

tion problem. In our case we attempt to recognize segmented surfaces in range

images.

Location and orientation of three-dimensional surfaces has always been the most

complex issue in many computer vision applications. Algorithms for a robust three-

dimensional recognition system must be view-independent. Herein, we have developed

a new technique to determine the three-dimensional surface location and orientation in

range images. We consider objects which are composed of common quadric surfaces

such as the ones described earlier. With this iterative technique the rotation parame-

ters (product terms) of the general description of a quadric surface are eliminated, thus,

aligning the surfaces with a common coordinate system. Convergence is achieved in

less than seven iterations. Once the object lies in a desired stable rest position, it is

intersected by a sufficient and necessary number of planes with different orientation so

that an unique set of curves characterizing the surface is obtained. This minimum

number of such planes can be estimated utilizing the analysis presented in this

research, where angular (orientation) bounds within which any plane intersecting a sur-

face results into the same type of curve are determined. In comparison to most of the

present day methods applied for range image object recognition, the proposed approach

attacks the problem in a different manner and is computationally inexpensive. This

new work on surface recognition, combined with existing segmentation methodologies,

could lead to the creation of a complete recognition scheme.

Section 2 reviews some of the earlier and current work in this area. Section 3

describes in detail newly developed techniques for range image edge detection and

range image segmentation. In sections 4 and 5 we discuss, in detail, our proposed



three-dimensionalapproach. Resultsare summarizedin Section6. Six different sets

of real rangeimagesof spheres,cylinders,andconeswere utilized to test the proposed

recognition scheme. Results obtained for simulateddata of other quadric surfaces,

namely, hyperboloidsand paraboloidsare also tabulatedin Section6. Section7 con-

cludeswith a discussionof possibleareasfor future investigation.



2. BACKGROUND

Many of the currently available techniques for describing and recognizing three-

dimensional objects are based on the principle of segmentation. Segmentation is the

process in which range data is divided into smaller regions (mostly squares). These

small regions are approximated as planar surfaces or curved surfaces based upon the

surface mean and Gausssian curvatures. Regions sharing similar curvatures are subse-

quently merged. This process is known as region growing. Other approaches [4-10]

characterize the surface shapes while dealing with the three-dimensional recognition

problem. Levine et al. [1 l] briefly review various works in the field of segmentation,

where segmentation has been classified into region-based and edge-based approaches.

Again surface curvatures play an important role for characterization in each of these

approaches.

Grimson et al. [12] discuss a scheme utilizing local measurements of three-

dimensional positions and surface normals to identify and locate objects from a known

set. Objects are modeled as polyhedra with a set number of degrees of freedom with

respect to the sensors. The authors claim a low computational cost for their algorithm.

Although they have limited the experiments to one model, i.e., data obtained from one

object, they claim that the algorithm can be used for multiple object models. Also,

only polyhedral objects with a sufficient number of planar surfaces can be used in their

scheme.

Another paper by Faugeras et al. [13] describes surfaces by curves and patches

which are further represented using linear parameters such as points, lines and planes.

Their algorithm initially reconstructs objects from range data and consequently utilizes

certain constraints of rigidity to recognize objects while positioning. They arrive at the

conclusion that for an object to be recognized, at least a certain area of the object

should be visible (approx. 50%). They claim their approach could be used for images

obtained using ultrasound, stereo, and tactile sensors.



Hu and Stockman[14] have employedstructuredlight as a techniquefor three-

dimensionalsurfacerecognition. The objectsare illuminated using a controlled light

sourceof a regularpattern,therebycreatingartificial featureson the surfaceswhich are

consequentlyextracted. They claim to have solvedthe problem known as "grid line

identification." From the generalconstraints,a setof geometricand topological rules

areobtainedwhich areeffectively utilized in thecomputationof grid labelswhich are

further used for finding three-dimensionalsurfacesolutions.Their results infer that

consistentsurfacesolutionsare obtainedvery fast with good accuracyusing a single

image.

Recognition of polyhedral objects involves the projection of several invariant

features of three-dimensionalbodies onto two-dimensionalplanes [15]. Recently,

recognition of three-dimensionalobjects basedupon their representationas a linear

combinationof two-dimensionalimageshasbeeninvestigated[16]. Transformations

suchasrotation and translationhavebeenconsideredfor three-dimensionalobjects in

terms of the linear combinationof a seriesof two-dimensionalviews of the objects.

Insteadof using transformationsin three-dimensions,it hasbeenshownthat the pro-

cess is the equivalent of obtaining two-dimensionaltransformationsof several two-

dimensionalimagesof the objectsand combining them togetherto obtain the three-

dimensionaltransformation. This procedureappearscomputationallyintensive.

Most of the techniquesand algorithmsmentionedabovehavea commoncriterion

for classifying the three-dimensionalobjects in the final phase. They havea database

of all the objectsthey are trying to recognizeand hencetry to matchfeaturesfrom the

test samplesto the featuresof theobjectsin thedatabase.

Fan et al. [17] usegraph theory for decomposingsegmentationsinto subgroups

correspondingto different objects. Matchingof the testobjectswith the objectsin the

databaseis performedin three steps: the screener,which makesan initial guessfor



each object; the graph matcher,which conductsan exhaustivecomparisonbetween

potential matching graphs and computes three-dimensionaltransformation between

them; and finally, the analyzer,which basedupon the results from the earlier two

modulesconductsa split andmergeof the objectgraphs. Thedistinguishingaspectof

this schemeis that the authorsused occluded objectsfor describingtheir proposed

method.

Forsyth et al. [18] usestereoimagesto obtain a rangeof invariantdescriptorsin

three-dimensionalmodel-basedvision. Initially, they demonstratea model-based

vision systemthat recognizescurved plane objects irrespectiveof the pose. Based

upon image data,models are constructedfor eachobject and the poseis computed.

However, theymainly describethree-dimensionalobjectswith planarfaces.

Lee and Hahn [19] have actually dealt with an optimal sensingstrategy. Their

main objective is to obtain valuable and effective data or information from three-

dimensional objects, which subsequentlycould be used to describeand recognize

naturalquadric surfaces.Works on stereovision canbe found in references20, 21, 22

and23.



3. RANGE IMAGE SEGMENTATION

A robust segmentation scheme is one of the primary requirements for three-

dimensional object recognition. Partitioning a given image into homogeneous

regions-this task has been the centerpiece of investigations of several major researchers

all of these years.

In this research we propose a simplistic segmentation scheme for un-occluded clut-

tered three-dimensional objects in a scene. A assumption relating to the three-

dimensional objects being quadric in nature, would further enable us demonstrate an

object recognition scheme proposed in an earlier paper.

The proposed method involves the extraction of jump edges which we refer to as

global edges. After having median filtered the resultant image thereby eliminating

some of the spurious edges, a thinning algorithm is implemented which facilities the

utilization of a blob determination algorithm thereby completing the segmentation pro-

cess. The blob finding algorithm which has been published earlier [30], the various

objects in a scene are marked, each area representing a particular surface. Using few

basic image processing techniques, such as image addition, subtraction, etc., each

marked area is further mapped into a data file, which is further utilized to determine

whether a given surfaces is quadric or some other surface.

3.1. Background

Most of the present day Segmentation techniques are classified as either region-

based approach or edge based approach [11]. While in a region-based approach an

image is segmented into regions corresponding to surface primitives which are further

defined using analytical functions, an edge-based approach looks into

discontinuity in range images in both the surface as well as the surface orientation.

Many of the segmentation techniques, both region-based and edge-based have been

reviewed in detail by Levine et. al [11].



Aggarwal et al. [28] proposed a segmentation technique of Range images using

pyramidal Data Structures. This approach consists of two levels of segmentations, a

lower-level, which groups pixels based on local properties irrespective of the surface

type, the higher-level segmentation is a surface based representation which groups pix-

els into homogeneous regions. Since local surface operations are involved, we con-

sider this technique to be very computationally intensive.

3.2. Segmentation Scheme

As in the case of most segmentation based recognition schemes, our proposed

technique has the following hierarchial outlook:

1. Edge marking,

2. Median filtering,

3. Image Thinning,

4. Contour filling,

5. Blob determination,

6. Image Data Mapping, and

7. Classification of the object as a quadric or non-quadric surface.

Since procedures 1 through 4 are well defined image processing routines, apart

from a brief discussion about them, the succeeding part of the report will mainly con-

centrate from procedures 5 onwards.

Since three-dimensional range images are in question, edge-based approaches

have been utilized. As mentioned earlier, objects in the image being cluttered but not

occluded, we are only concerned about jump edges. After computing the difference in

depth values, and using a suitable threshold, edges are marked on the real images.

Subtracting these edge-marked images from the original range images yields the image

of edges in the scene.

The classical thinning algorithm [29] is then implemented, whereby most of the

edges are thinned to a pixel thickness. Since specks of isolated pixels and small



streaksof lines may result in somecases,a median filter eliminatesmost of these

abnormalitiesto a largeextent. Placeswhereedgesareprominentbut haveoneor two

pixels missing are filled using a contour filling algorithm proposedin [29]. At this

instantthe thinned-edgemarkedimagesare readyto undergothe blob or areadetermi-

nationroutine. The procedureis explainednext in detail.

The N x M imagearray is augmentedby two columns(one to the left andone to

the right) and two rows (one to the top and the other to the bottom) all filled with

white pixels.

The white pixels of the first row are assignedan arbitrary value v. Beginning

with the secondrow, whenevera white pixel is encounteredthe minimum assigned

value of the two neighboringpixels, as shownin Figure la, is assignedto this pixel.

All the black pixels encounteredareassignedthe valueNM + v, whereNM is the total

numberof all the pixels (black and white) in the characterarray and v is the initial

value assignedto the white pixels of the first row. This value of NM + v never

changes. Whenevera white pixel has two neighboringblack pixels as in Figure lb,

the value of v is incrementedand the new value is assignedto this white pixel. The

secondstepof the processinvolves the reassignmentof all the white pixels with the

minimum assignedvalue of the four neighboringsites as shown in Figure lb. The

assignmentremainsthe same(NM + v) for blackpixels. Step2 is repeatedfor N (the

numberof rows) iterations. In step3, the numberof distinct integersother thanv and

NM + v (assignedto black pixels) aredetectedasthe numberof levels L. The value

of L thendenotesthe numberof closedareasin a image.

This procedurecan be summarizedas follows. Let the pixels of the imagearray

bedenotedas

p(i,j),l<i<N+2, l<j <M+2,

p(i,j) = 0 refers a white pixel and
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p(i,j) = 1 refers a black pixel.

For all

p(1,j), l_<j _<M + 2

p(N+2,j), 1_<j _<M + 2,

p(i,1), 1<i _< N + 2,

and

p(i,M+2), 1_<i <_N + 2, we assign the value ni. j = V.

Beginning from the second row,

For 2<i<N+l, 2<j<M+I

If p(i,j) = 1, assign hi, j = NM + v

If p(i,j) = 0, then

if p(i - 1,j) = p(i,j - 1) = 1, then ni,j = max(nl,k) +1,

for all l_<i, k<j, where nl,k_: NM + v

otherwise assign ni,j = min(ni._l, j ,ni.j_l)

During the second step, for

2<i<N+ 1, 2<j<M+ 1,

for each pixel p(i,j), with assignment nij_: NM + v

assign hi, j - min(ni_l, j , ni. j , ni.j_ 1 , ni.j+ 1 , ni+l,j )

Step 2 is repeated N times.

In the third step,

initialize L(level) = 1

initialize maximum = 0

initialize minimum = NM + v

For all 2<i<N+ 1, 2<j<M+ 1,

For all ni, j _: NM + v, and hi, j _: v ,

Find maximum and minimum of hi.j,

If maximum = zero, then,

Stop. The number of enclosed areas is Zero.

If maximum = minimum (_: zero), then,

Stop. The number of enclosed areas is L.

Else,



(when maximum_ minimum ), then,

Level(L) = L + 1 .

Now for all ni0j .EQ. minimum,

assign, ni,j = maximum.

re-initialize, minimum= maximum,andcontinue.

At the end of the loop the value of "L" gives the numberof closedareasin a

image. Eachareais further markedandistint integersoasto map the particularrange

valuesto differentdatafiles.

The experimentalsectionconsistsof a particularimage of a printed circuit board,

wherein some of the objects have been classified as spheres, ellipses, and planar sur-

faces. Now that the surfaces have been segemented, in the next section we describe

the recognition scheme in detail to recognize all of the quadric surfaces.



4. FORMULATION OF THE RECOGNITION SCHEME

Figures 2, 3, and 4 illustrate the following three-dimensional quadric surfaces

which are considered for the recognition process: ellipsoids, the hyperboloids of one

and two sheets, quadric cones, elliptic paraboloids, hyperbolic paraboloids, elliptic

cylinders, parabolic cylinders, hyperbolic cylinders, and parallelepipeds.

Most three-dimensional objects of practical use which are usually man-made, may

be assumed to consist of at least one of the surfaces described above. All the

representations of surfaces which were described above hold true under ideal condi-

tions, i.e., when the source data is perfect, exact pose and orientation of the objects are

known, the system is noiseless, etc. However in the real world, practically none of

these conditions hold true. Any set of data, whether it is derived or generated from a

passive (camera) or an active sensor (laser range mapper), can at best be approximated

to a second-degree polynomial. Whether this polynomial accurately represents a sur-

face or not, and if so, how these coefficients (representation) can be chosen to come

close to recognizing a three-dimensional object, is the whole issue of the recognition

problem.

However, before elaborating on the recognition scheme, an overview of the tech-

nique is presented. The recognition scheme utilizes a two-dimensional discriminant

(which is a measure for distinguishing two-dimensional curves) to recognize three-

dimensional surfaces. Instead of utilizing the ten generated coefficients and attempting

to recognize the surface from its quadric representation, the quadrics are identified

using the information resulting from the intersection of the surface with different

planes. If the surface is one of those listed above, there are five possible two-

dimensional curves that may result from such intersections, (i) a circle, (ii) an ellipse,

(iii) a parabola, (iv) a hyperbola, and (v) a line. Thus, a feature or pattern vector

with five independent components can be formed for characterizing each of the sur-

faces.
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4.1 Recognition Scheme

Our recognition scheme consists of the following steps:

(1) acquisition of the range data and conducting the pre-processing steps,

(2) description and representation of objects as general second degree surfaces,

(3) determination of the location and orientation of the objects with respect to a

desired coordinate system,

(4) performance of the rotation and translation transformations of the object so as to

place it in a stable desired coordinate system,

(5) use of the principle of two-dimensional discriminants to classify the various curves

obtained by intersecting the surfaces with planes, and

(6) acquisition of an optimal set of planes sufficient enough to distinguish and

recognize each of the quadric surfaces. Angular bounds within which every

surface yields a distinct set of curves are also determined in this step.

The range data, as mentioned in Section 1, is a pixel-by-pixel depth value from

the point of origin of the laser to the point where the beam impinges on a surface.

The objects are scanned from left-to-right and top-to-bottom. A grid frame may con-

sist of 512 x 512 pixels. Before this range data is applied to the object classifier, it is

median filtered and segmented.

As in our case [24], experiments were performed with square windows of mask

sizes 3 x 3 and 5 x 5. Based upon certain curvature analysis, the 5 x 5 median filtered

was found to be the most suitable for our purposes. Since isolated objects instead of

complex scenes are considered, a simple thresholding whereby the object is separated

from the background is utilized for the segmentation process. In the case where

objects are irregular or a scene consists of a cluster of objects, Gaussian and mean cur-

vatures have to be utilized to sub-divide the scene into planar or curved surfaces.

Each surface is then recognized separately. Range image segmentation has been

extensively studied by Levine et al. [11].



The processedrangedatais next utilized to obtain the quadric surfacewhich best

fits the data. Using theproceduredescribedin [25], we determine the coefficients of a

second degree polynomial representation for the three-dimensional surface. We

assume that the data is a set of range-image samples obtained from a single surface

which can be described by a quadric equation

F(x,y,z) = ax 2 + by 2 + CZ2 + 2fyz + 2gzx + 2hxy + 2px + 2qy + 2rz + d -- 0, (1)

where the values of the coefficients a, b, c, f, g, h, p, q, r, and d are known. Generally

speaking, all of the objects in the experiments generate all ten coefficients as is shown

in Section V. The question now is: How can we distinguish one object from the

another and how accurately can we describe the recognized object? In the following

sections of this section and Section IV, we describe the necessary scheme to solve the

recognition problem of quadric surfaces.

4.2 Evaluation of the Rotation Matrix

The determination of the location and orientation of a three-dimensional object is

one of the central problems in computer vision applications. It is observed that most

of the methods and techniques which try to solve this problem require considerable

pre-processing such as detecting edges or junctions, fitting curves or surfaces to seg-

mented images and computing high order features from the input images. Since

three-dimensional object recognition depends not only on the shape of the object but

also the pose and orientation of the object as well, any definite information about the

object's orientation will aid in selecting the right features for the recognition process.

In this section we suggest a method based on analytic geometry, whereby all the

rotation parameters of any object placed in any orientation in space are determined and

eliminated systematically. With this approach we are in a position to place the three-

dimensional object in a desired stable position, thereby eliminating the orientation



problem. We can then utilize the shapeinformation to explicitly representthe three-

dimensionalsurface.

Any quadric surfacecan be representedby Equation (1) in terms of a second

degreepolynomial of variablesx, y, andz.

The rotation parameters(productterms,2f, 2g, and 2h) after undergoinga setof

sequentialrotations about the threecoordinateaxes (rotationalmatrix formulatedand

describedin Appendix 1), havethefollowing representations:

2f"=r [(b'c°s20_+ a'sin2°t+ h.sin2ct-c)sin2[3 + (2g-sintx+ 2f-costx)cos2[3]cosy.j
"1

+ [((b- a)sin2ct - 2h'cos2ct)cos[3 + (2g'coso_- 2f.sino0sinl3Jsin T. (2)

2g"= sin2y[-cosEot(a- b.sin2[3)- sin2_(-a.sin2[3 + b)+ c.cos2lS].,
F 1

sin2"t]sin213(f.cosa + g'sintx)+ h.sin2a(1 + sin213)J (3)+

+ cos2YLsin2asinl3(a't _ b) + 2h.sin_os2a + cosl3(2g.cosa - 2f.sinct)].

2h" = sin2_siny[a.sin2o_ + b.cos2o_ - c + h-sin2ot] +cos2lSsinq,[2g.sinct + 2f.coso_]

+ cos[Scosy[sin2t_(a - b) + 2h'cos2o_] + sin_cosy[2f.sintx - 2g.cosot]. (4)

In order to eliminate the product terms 2f", 2g", and 2h", expressions (2) - (4)

must be set equal to zero and solved simultaneously. As seen from these three expres-

sions, each of them is a function of the rotation angles _, 13, and 7. It is not possible

to analytically find the rotation angles which eliminate the product terms. Instead, in

the next section we present an iterative technique which performs the elimination of

the product terms.

4.3 Product Terms Elimination Method

The product terms yz, xz, and xy in F(x,y,z), denote the rotation terms which are

to be eliminated. Elimination of all these rotation terms will place the three-

dimensional surface on a coordinate system plane parallel to our coordinate system.



Observethat in the presenceof a single rotation term, say yz, Equation (1) takes

the form

F(x,y,z) = ax 2 + by 2 + cz 2 + 2fyz + 2px + 2qy + 2rz + d = 0.

The equation of the trace of the surface in the yz plane is obtained by setting x = 0.

An appropriate rotation about the origin in the yz plane by an angle 13 will eliminate

the yz term.

However, in the presence of two or more rotation terms, trying to eliminate a

second rotation term will force the previously eliminated rotation term to reappear.

Therefore, there will be at least two rotation terms present. The approach we propose

is an iterative process, whereby at each stage the object is rotated in each of the coor-

dinate planes, sequentially. The procedure is repeated until all the product terms are

eliminated, i.e., the coefficients f, g, and h converge to zero in the limit.

Since our aim is to eliminate the rotation terms xy, yz, and xz, let's exclusively

consider the coefficients of these rotation terms, namely f, g, and h evaluated in Sec-

tion 3.2. In our iterative procedure we are able to eliminate all of the product terms.

For example, suppose we wish to eliminate the term xy. By a specific rotation of ot

about the z axis, we will be able to accomplish our goal. However, while executing

this process, the orientation of the object about the two planes yz and zx, i.e., the

angles the object makes with these two planes have been changed. If we wish to elim-

inate the yz term, the object has to be rotated about the x axis by an angle 13.

Nevertheless, in this instance, while performing the process, the previously eliminated

xy term reappears though the magnitude of its present orientation has been reduced.

Hence by iterating the above process, an instance occurs when all the coefficients of

the product terms converge to zero in the limit.

Consider the Equations (2), (3), and (4). First eliminate the coefficient h, i.e, the

xy term. This can be accomplished by rotating the object about the z axis by an angle



o_,whereas 13---y=0.

below.

and

Under thesecircumstancesthe new coefficients are as shown

2fll = 2g'sina1+ 2f.cosoq,

2gll = 2g'cosct1- 2f-sinoq,

b-a
where cot2o_ 1 -

2h

2hll = (a - b)sin2oq + 2h.cos2oq = 0,

As seen above, the coefficient h has been forced to 0. The first digit of the subscript

refers to the iteration number, whereas the second digit of the subscript denotes the

number of times the object has been rotated by a specific angle. The remaining

coefficients a, b, c, p, q, and r also reflect changes brought about by the above rotation.

The new coefficients are

all = a.cos2o_l + b-sin2otl - 2h.sino_lCOSOtl,

bll = b.cos2otl + a.sin2otl + 2h-sinotlcosotl,

Cll = C,

2pll = 2p-cosot 1 - 2q-sinoq,

and

2ql I = 2p.sinoq + 2q.cosoq,

The new quadric equation is

2rll = 2r.



F(x,y,z) = all x2 + bllY 2 + Cll z2 + 2fllyz + 2gllxz + 2pllx + 2qlly + 2rllz + d = 0.

Consider the second step wherein the coefficient corresponding to the yz term is

forced to zero. In this particular case, the object has to be rotated by an angle 13

about the x axis, where 0t---y=0. Under these circumstances, the new rotation

coefficients (signifying the product terms) become

where cot2_l -

2f12 = (b12 - c12)sin2_l + 2fll.COS2_1 = 0,

Cll - bll

2fl 1 '

2g12 = 2gll.COS_b

and

2h12 = -2gll.sin[31.

At the same time the other coefficients become

and

a12 = all,

b12 = Cll.sin2_l + bll'COS2_l - 2fll.sin_lcOS_l ,

C12 = bll-sin2_l + Cll.COS2_l + 2fll'sin_icos[31,

2pl 2 = 2plI,

2ql 2 = 2qll.COS_l - 2rll.sin_l ,

2r12 = 2qll.sin131 + 2ql-cos_l.

The new quadric equation is:



F(x,y,z) = a12x2+ b12Y2+ c12z2+ 2gl2xz+ 2hl2XY+ 2P12x + 2q12Y+ 2r12z+ d = 0.

In the final step of the initial iteration, the coefficient corresponding to the xz

forced to zero.

axis, whereas

becomes

In this case, the object is to be rotated by an angle ),

ot=13--0. Under these circumstances, the new rotation

term is

about the y

coefficients

2f13 = 2hl2.sinY1 = -2g11.sin_1sin_, 1,

where cot2_, 1 -

and

2g13 =(a13 - Cl3)sin2Y1 + (2g 11"cosct 1 - fll.sin_l)COSl31cos2Y1 = 0,

c12 - a12

2g12

2h13 = 2hl2.COSY1 = -2gll.sin[31cosT1.

Let's now carefully analyze the coefficients of xy, yz, and zx obtained in the final step

of the first iteration. Consider, for instance, the coefficient corresponding to the yz

term. It is observed that while proceeding from one step to the other, the new

coefficients are getting multiplied by the sine or cosine of the concerned angle. This

implies that in every succeeding step these coefficients are decreasing in their magni-

tude. To justify the above statement, let us now consider all the coefficients obtained

in the second iteration.

At the end of stage 1 of the second iteration, the rotation coefficients become

2f21 = 2fl3.COSOt 2 = -2g ll.sin_lsinY lcosct 2,

and

2g21 = -2fl3-sinot 2 = 2g 11"sinai sinYl sinct 2,

2h21 = O, where cot2ot 2 -
hi3 - a13

2h13



At the end of the second stage of the second iteration, the rotation coefficients

become

c21 - b21
2f22 = 0 where cot2_ =

2f21

2g22 = 2g 1l'sin131 sin71 sincr2cos13 2,

and

2h 22 -- -2g 11"sin 131sin71 sintx2sin 132.

Similarly at the end of the final stage of the second iteration, the rotation coefficients

reduce to

2f23 = -2g 1l'sin131 sinT1 sinct2sin132sin72,

and

2g23 = 0 where COt20_ 2 --
b13 - a13

2h13

2h23 = -2gll.sin131sinYlsin_2sin132cos72

The terms tx2, 132, and 72 are the respective rotation angles along the z, x, and y axes

in the second iteration. Hence it is observed with each iteration that the rotation

coefficients get smaller and smaller in magnitude and eventually disappear in the limit.

Once the rotation terms, i.e., xy, yz, and xz are eliminated, the three-

dimensional surface has the representation of

F(x,y,z) = Ax 2 -4-By 2 + Cz 2 + 2Px + 2Qy + 2Rz + D = 0, (5)

where A, B, C, P, Q, and R are the coefficients resulting after the elimination of the

rotation terms. A natural question to ask is: Can the terms of the first degree be elim-

inated by means of a translation? The answer is sometimes they can and sometimes



they cannot. The case,wherethe term can be eliminated,is supportedby the follow-

ing theorem.

Theorem 1. The terms of the first degree of an equation of a quadric surface can

be eliminated by means of a translation if and only if the surface has a center, in

which case the first degree terms are eliminated if and only if the new origin is a

center [26].

All of the above procedures performed until now result in a second degree poly-

nomial describing an unknown object, the center of the object lying at the origin of

our coordinate system. Had the test data been simulated, the three-dimensional

discriminant approach which was mentioned in Section 1 could be used to describe

and recognize the object. Since the test data is not simulated, we should utilize a

recognition algorithm which will distinguish and recognize each of the test surfaces

from one another.

The intersection of a surface with a plane generates a curve. The nature of this

curve depends solely on what type of object is intersected and with which particular

plane and in which orientation. Since we have no knowledge of the surface type, a

priori, one approach is to intersect the surface with a series of planes. We need to

determine the optimum number of planes which will uniquely characterize each of the

quadric surfaces.

Our goal is to derive a consistent method for determining the minimum number

of planes necessary to intersect a given quadric surface so that the generated conics

uniquely characterize the surface. This goal includes the derivation and formulation of

the angular bounds for which a particular plane intersecting a surface generates the

same two-dimensional curve. In summary, each of the quadric surfaces is represented

by a unique five-tuple, whose elements signify the presence or absence of the follow-

ing curves: circle, ellipse, hyperbola, parabola, and a line.



5. QUADRIC SURFACE CHARACTERIZATION AND RECOGNITION

Our proposed method utilizes a two-dimensional discriminant which is a measure

for distinguishing curves. Since the ten generated coefficients described in Section 3

give a three-dimensional representation of the surfaces, we propose to identify the qua-

drics using the information resulting from the intersection of the surface with different

planes. If the surface is one of those considered for the recognition process (see

figures 2, 3, and 4), there are five possible two-dimensional curves that may result

from such intersections: (i) a circle, (ii) an ellipse, (iii) a parabola, (iv) a hyperbola,

and (v) a line. Thus, a feature or pattern vector with five independent components can

be formed for characterizing each of the surfaces.

The three-dimensional surfaces (objects) to be recognized are listed below:

(a) an ellipsoid,

(b) a circular cylinder,

(c) a sphere,

(d) a quadric cone,

(e) a hyperboloid of one sheet,

(f) a hyperboloid of two sheets,

(g) an elliptic paraboloid,

(h) a hyperbolic cylinder,

(i) a parabolic cylinder,

(j) a hyperbolic paraboloid, and

(k) a parallelepiped.

As discussed in Section 3.2, we now assume that the three-dimensional objects

have undergone two basic transformations, rotation and translation. Consequently the

product terms in the representation F(x,y,z) for a particular surface have been elim-

inated and the center of the surface lies at the origin of our specified coordinate sys-



tem. As illustrated in figures 2, 3, and4, all of the surfacesarecontainedin the xy

planewith their centersat O (theorigin). For eachsurface,the characterizationis per-

formed in two steps. Initially we consider the intersectionof each object with two

planes(horizontalandvertical). This stepdoesnot requirethat thesurfaceundergoesa

translation transformation. We refer to plane 1 as the one that intersectsthe object

parallel to the xy plane,i.e., z constant. Also refer to plane 2 as the one that inter-

sects the object parallel to the xz plane, i.e., y constant. In the second step, the

minimum set of intersecting planes needed to yield a unique feature vector (the various

curves serve as features) is determined. In this step we assume that the object has

undergone the translation transformation. Next we consider the representation pro-

cedure for the quadric cone which is similarly conducted for each of the remaining

surfaces.

Step 1."

The general representation of a circular cone on a plane parallel to the

and its axis of revolution parallel to the z axis is

F(x,y,z) = bx 2 + by 2 + cz 2 + 2px + 2qy + 2rz + d = 0,

rwhere bc < 0 and d = 192 + q2 + --.
b b c

From Equation (6), upon completing squares, we have

xy plane

(6)

I, j2 Iyql IzrJF(x,y,z)=b + +b + +c + +d- b - b c

,.,2 r2
Since d = .e__..+ _ + -- Equation (7) becomes

b b c'

(7)

F(x,y,z)- Ix + p]2 [y + q]2 [z + c]2
+ -0.

1 1 -1

b b c

(8)



In the case of the elliptic cone, Equation (8) reduces to

F(x,y,z)- [x+_12 [Y+ b_'12 Iz+
+

1 1 -1

a b c

where ab > 0, ac < 0, and bc < 0.

represented by Equation (8) with

r< k <-- + , would generate
C

- 0, (9)

If c < 0, i.e., b > 0, the intersection of the cone

plane 1' i'e" z = k' where -r 4_-
C

1 1 1 ' (10)

b b c

1
where --- is a positive quantity.

C
The above equation is that of a circle. The elliptic

cone on the other hand which is represented by Equation (9), upon intersection with

plane 1, i.e., z= k, where -r 4_-<k<---f-r +4_- wouldgenerat e
C C '

1 1 1

a b c

which is an ellipse. The intersection of the circular cone with plane

where -q - _f"_ -q + _-_, would generateb <k< b

2, i.e.,

(11)

y=k,

1 -1 1

b c b

(12)



1
where --- is a positive quantity. Equation (12) representsa hyperbola. A similarc

result is obtained when the elliptic cylinder is intersected with plane 2.

Step 2:

The quadric representation of the elliptic cone illustrated in Figure 5 is

X 2 y2 Z 2

A--_- + BE C2 - 0. (13)

Intersection of the cone with horizontal planes z = k, where -c < k < c, generates

ellipses as intercepts. Let us consider the horizontal plane Z = -C and determine the

various intercepts formed by its inclined sub-planes. The equation of the plane passing

through the points E(A,0,-C), F(0,-B,-C), and G(0,0,L) where -C < L < C, is

-A(C+L)Y + ABZ + B(C+L)X - ABL = 0.

Substituting Z in Equation (13) results in br

B2[C2 - (C+L)E]x2 + A2[ C2 - (C+L)2] Y2 - 2AB(C+L)2Xy + .... = 0,

thereafter,

= 4A2B2[(C+L)4 - (L2+2LC)2].

Analyzing 5 leads to the following bounds:

For L > 0 the intersections are hyperbolas.

C

For all values of L, -C < L < O, except for L=-C+-_-, the intersections are

ellipses.

C

For the one particular case where L=-C+-_-, the intersection is a parabola. In

terms of 0, the angle between the Z = -C plane and its inclined sub-plane is

cos0 = AB

"_/(A2(C+L) 2 + A2B 2 + BZ(C+L) 2) "



DETAILED VIEW" HORIZONTAL INTERSECTIONS

z A

X
P2

/ •

Figure 5. Plane P1 and planes parallel to it within the range -c to c (except

the one passing through the orion) generate ellipses. Plane P2 is the inclined

sub-plane which denotes the maximum inclination or range (of plane P1) wit-

hin which ellipses are generated. 0 is the angular bound in terms of the angle.



Next, considerthe intersectionsformed by the plane X = 0 and its sub-planes.

Substituting X = 0 in Equation(13) leadsto the intersection

y2 Z 2
= 0,

B 2 C 2

which is a degenerate hyperbola. For all -A < X < A, the intercepts are hyperbolas.

The equation of the plane passing through the points H(0,-B,-C), I(0,B,-C), and

J(L,0,C), where L > 0 is

LZ- 2CX + LC = 0.

Solving for Z and substituting in Equation (13) leads to the representation of the inter-

cept as

X2[ L2 - 4A2] B2 + L2A2y 2 + 4A2B2XL + • • • = 0. (14)

Solving L2--4A 2, indicates the following conditions for the various intercepts:

For L = 2A, the intercept is a parabola.

For all values of L, -2A < L < 2A, the intercepts are hyperbolas.

For all L > 2A, the intercepts are ellipses.

Figure 6 illustrates all of the above results. The angle between the X = 0 plane and

its inclined sub-planes for the above obtained interceptions is

+2C
cos0 <

"_(L 2 + 4C 2)

Figure 7 shows a lateral view of all possible curves intercepted in a quadric cone by

the various planes. Table 1 summarizes the results obtained for the quadric cone.

Table 2 lists out the various discriminants obtained which aid in differentiating the

several quadric surfaces. The variables A, B, C, L, and K signify the radius and

height of the quadric surfaces.



DETAILED VIEW" VERTICAL INTERSECTIONS

°

J

-li>

° °

Y

Figure 6. Plane P1 and planes parallel to it within the range -b to b generates

degenerate hyperbolas. Plane 1'2 is the inclined sub-plane which shows the outer

region or the maximum inclination (of plane P 1) within which hyperbolas are int-

ercepted. O is the angular bound in terms of the angle. Plane P3 is the only exce-

ption where the intersection is a parabola. In this case the inclination of the plane
P3 is equal to the base angle of the cone.



LATERAL VIEW

INTERSECTION OF A PLANE AND A CONE

/

I

1"4

\

/

/
/

P1

\

P3

P2

Figure 7. Pl, P2, P3, and P4 are the four planes which generate all the

intersections with the quadric cone. Plane P1 which has the same base angle

as that of the cone intercepts a parabola. Plane P2 intercepts a hyperbola.

Plane P3 intercepts a circle and finally plane P4 intercepts an ellipse. (The

quadric cone under question has a circular base).



PLANE

Z=K

X=K

Inclined sub-planesof Z=K, 1.20

Inclined sub-planesof Z=K, -C < L < O

Inclinedsub-planesof Z=K, L=--C+-qL--
_2

Inclined sub-planesof X=K, L = 2A

Inclined sub-planesof X=K, L < 2A

Inclined sub-planesof X=K, L > 2A

INTERSECTION

Circle, Ellipse

Hyperbola

Hyperbolas

Ellipses

Parabola

Parabola

Hyperbolas

Ellipses

Table 1. Intersectionof quadricconewith planes.

Table 3 summarizesthe variouscurves(conics)derived from intersectingeachof

the elevensurfaceswith thetwo planes z = k and y = k. Theseobservationsfollow

the resultsobtainedin step 1 of eachof the quadric surfaces. As seenfrom Table 3,

the quadriccone andthe hyperboloidof one andtwo sheetsall generatesimilar curves.

However, after using the resultsof step 2 (where angularboundshave beendeter-

mined), we are able to distinguish each of the quadric surfacesfrom one another.

Each of the quadric surfacescan be representedby a binary five-tuple, where the

numeral 1 indicatesthe presenceof a particular curveandthe numeral 0 refers to the

non-existenceof that curve. Table 4 presentsthe featurevector for eachof thequadric

surfaces.

Quadric surfaceswhich seemto haveidentical featurevectors in the table above,

get differentiatedwhen the angularboundstheoryas definedand derived for eachof

the surfaces(step 2) is applied.
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eU_pse

ellipse

elliptic cylinder

elliptic cylinder

i

c_rcle ' sphere

hyperbola, elhpse, parabola

paraL_la, hyperbola,elbpse

parabola, hy!_ right.el bpse

parabola, hyp_ rbola.elbpse

h)T_rtx_la, parabola, elbpse

parabola, hyTX:rbola,el hpse

pa raboiz, hypertx>la.elbpse

ellipse

quadric cone

quadric cone

hyperboloid of one sheet

h)perl)oloid of one sheet

hyperboloid of one sheet

hyperboloid of two sheets

hyperboloid of two sheets

elltptic paraboloid

-..o,o< a.-_2 eU_pse elliptic paraboloid
_(N 2 . (g ._ 12.3

Table 2. Discriminants and bounds associated with the various quadric surfaces.



OBJECT

Ellipsoid

Circular cylinder

Sphere

Quadric cone

Hyperboloid of one sheet

Hyperboloid of two sheets

Elliptic paraboloid

Hyperbolic cylinder

Parabolic cylinder

Hyperbolic paraboloid

Parallelepiped

PLANE 1 :x=k

Ellipse

Circle

Circle

Circle

Circle

Circle, Point

PLANE 2 : y = k

Circle

Line

Circle

Hyperbola, Parabola

Hyperbola, Parabola

Hyperbola, Parabola

Ellipse

Hyperbola

Line

Hyperbola

Line

Parabola

Line

Parabola

Line

Line

Table 3. The various curves intercepted by the quadric surfaces when intersected with
the planes z=kand y=k.



3-D SURFACE

Ellipsoid

Circular cylinder

Sphere

Quadriccone

Hyperboloidof one sheet

Hyperboloidof two sheets

Elliptic paraboloid

Hyperbolic cylinder

Paraboliccylinder

Hyperbolicparaboloid

Parallelepiped

CIRCLE

1

1

1

1

1

1

1

0

0

0

0

ELLIPSE

1

1

0

1

1

1

1

0

0

0

0

PARABOLA

0

0

0

1

1

1

1

0

1

1

0

HYPERBOLA

0

0

0

1

1

1

0

1

0

1

0

Table 4. Featurevectors(representingthe prescenceor absenceof curves)for eachof
the quadricsurfaces.

LINE

0

1

0

1

0

0

0

1

1

1

1



6. EXPERIMENTAL RESULTS

Range images were obtained using the Laser-Range-Mapper. The range image

sensor is based upon FMCW coherent laser radar (CLR) systems previously developed

by the Digital Signal Division of Coleman Research Corporation [27]. In these sys-

tems, a laser diode source is frequency chirped via its injection current such that the

output optical frequency is swept linearly as a function of time. The laser output is

divided and used both as a local oscillator (LO) arts as the signal to be transmitted.

After being time delayed by the round trip transit time to the target, the received signal

is mixed with the optical LO on a photodiode. The resultant beat frequency is equal

to the optical signal multiplied by the time delay between the received signal and the

local oscillator. Since this time delay is proportional to the target distance, the RF

beat frequency is also proportional to the target distance. Most of the processing and

computations were conducted on a Micro Vax 750 system.

The experimental work was performed in the following order :

(i) The effect of median filtering on range images was studied.

(ii) The proposed recognition scheme was applied to filtered range images.

(iii) The quadric alignment algorithm was applied to simulated and real data.

(iv) The three-dimensional discriminant approach was tested with simulated data.

Range images of objects like spheres, cylinders and cones were segmented in

order to separate the object from its background. The resulting image, which is

referred to as the raw image, was then median filtered with mask size 5 x 5. Once the

data files were obtained for each of the filtered images, the depth information of each

of these files was converted into rectangular coordinates. The operation manual for the

laser radar three-dimensional vision system [27] describes the equations used for the

transformations of the range information from spherical coordinates to rectangular

coordinates:



X = (R - L)sinOf,

and

Y = (R - _0f- L)sin0gcos0f,
COS

Z = (R - _---_--Of- L)coS0gCOS0f,
COS

where Of is the horizontal scanning angle and 0g is the vertical scanning angle.

Of = 25 ° - (horizontal pixel #) (0.1961 deg/pixel).

0g = (vertical pixel #) (0.1961 deg/pixel) -25 °.

L = 0.362m.

R is Range in meters = (0.00459 m/pixel)(Range pixel) + (n - 1/2),

where n is the electronic range in meters set by the operator. The cartesian coordi-

nate information was then utilized for determining the coefficients which describe each

of the three-dimensional surfaces.

Experiments were conducted on real range data for spheres and cylinders and

cones. Consider the case of the cylinder shown in Figure 8. The coefficients of the

general equation for a 5 x 5 filtered image were

a = 0.0572

b = 0.599

c = 0.4416

2f = -0.807

2g = 0.459

2h = -0.149

2p = -0.5915

2q = 1.089



41 i

Figure 8. Processed range image of a
cylindrical surface.

pipe which is described and recognized as a



2r = -1.019

d = 0.664

These coefficients by themselves do not come any close in describing the cylinder.

However, after utilizing the alignment algorithm, a entirely new set of coefficients as

shown below is generated.

a = -0.07251

b = 0.977

c = 0.1930

2f = 0.0

2g = 0.0

2h = 0.0

2p = -0.1764

2q = 1.5696

2r = - 1.1902

d = 0.664

Three iterations were needed to eliminate the product terms. The rotation matrix was

found to be

Io8o6 0 610.764 0.63 ,

[_0.581 -0.565 0.584]

from which the orientation of the cylinder with respect to our coordinate system was

determined to be

12.18 °

4.33 °

41.91 °

When these angles of o_, ]3, and 7 were plugged back in the expressions of the product

terms, f, g, and h, respectively, all converged to zero in the limit. This result validated



our alignment technique. Step 1 of the featureextractionmode results in line being

interceptedwhen the surfaceis intersectedwith the planey = k. Planez = k on the

other handinterceptsanellipse. Utilizing the set of planesderivedearlier, the object

is classified as a cylinder. Proceedingfurther, using the coefficientsof the 5 x 5

filtered imageof the cylinder, the diameterof this particularcylinder wascalculatedto

be 4.99centimeters.The actualdiameterof thecylinder was5.08centimeters.

A similar set of coefficientsobtainedfrom the 5 x 5 filtered imageof a quadric

coneareas listed next:

a = 0.995

b = -0.034

c = -0.008493

2f = 0.0504

2g = -0.1104

2h = -0.04773

2p = 0.009587

2q = -0.001688

2r = 0.006907

d = -.01O696

After the rotation alignmenttechniqueis applied,the aboveset of coefficientschange

to

a = 0.688

b = 0.3408

c = -1.09

2f = 0.0

2g = 0.0

2h = 0.0

2p = -0.124



2q = 0.296

2r = -0.0902

d = 0.0789

Three iterationswere neededto eliminatethe productterms.

found to be

The rotation matrix was

0.99 0.0476 --0.0416_

--0.0199 0.86 0.506 1,
0.06 -0.505 0.861 ]

from which the orientation of the cylinder with respect to our coordinate system was

determined to be

--0.21 ° 1

8.985°[.

2-77o J

When these angles of o_, 13, and Y were inserted back in the expressions of the product

terms, f, g, and h, respectively, all converged to zero in the limit. This result validated

our alignment technique. Step 1 of the feature extraction mode results in a ellipse

being intercepted when the surface is intersected with the plane y = k. Plane z = k on

the other hand intercepts an hyperbola. Utilizing the set of planes derived earlier, the

object is classified as a quadric cone with an elliptic base. Proceeding further, using

the coefficients of the 5 x 5 filtered image of the cone, the diameter of this particular

cylinder was calculated to be 10.12 centimeters. The actual diameter of the cylinder

was 9.98 centimeters.

Experiments were carried out for four sets of other real range images of spheres,

cylinders, and quadric cones. In all of these cases the surfaces were correctly recog-

nized after utilizing the discriminants and the angular bound information listed in

Table 2.



The rotation alignmenttechniquewasutilized for a largegroupof simulateddata.

Listed in Tables5, 6, 7 and areseveraluponwhich the utilization of our recognition

scheme correctly identified the surfaces.Upon applicationof our recognitionscheme

the quadric surfacesrepresentedin Tables5, 6, and7 werecorrectly recognizedasan

ellipsoid, a hyperboloidof one sheet,and a hyperboliccylinder, respectively.

All the simulateddatasetsof quadric surfacescould be recognizedafter conduct-

ing the rotation alignmenttechniqueon theoriginal quadraticrepresentation.

Experimentalresults for the newly proposedsegmentationschemeis discussed

next. Shownin Figure 9(a) is a rangeimageof a printed circuit board(PCB). Utiliz-

ing a edge detectorschmebasedupon gradient information, two types of edgesare

determined. Figure 9(b) is the edge-imagealong the y-direction, whereasFigure 9(c)

is the edge-imagealong the x-direction. A stepedge-imageis formed by overlaying

imagesin figures9(a) and (b). Next a thinning algorithm is utilized to thin edgesto a

pixel thick. Unwantededgesand streaksof saltandpeppernoiseis eliminatedusinga

median filter of size5 x 5. Figure 9(d) illustratesthis new image. Next utilizing the

blob finding techniquevariousenclosedareas,eachreflecting a surfaceis determined,

and subsequentlymapped. The resultantimageis shownin Figure 9(e). The mapped

imagescan now be utilized for the recognition schemewhich was describedin vast

detail in sections4 and5.
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COEFFICIENT

A. COEFF. OF X_

B, COEFF. OF y2

C, COEFF. OF Z:

F, COEFF. OF YZ

G, COEFF. OF XZ

H, COEFF. OF XY

P, COEFF. OF X

Q, COEFF. OF Y

R, COEFF. OF Z

D, CONSTANT

BEFORE

103

125

66

-6O

-12

-48

0.0

0.0

0.0

-294

AFTER ALIGNMENT

49.84

96.887

145.3905

0.0

0.0

0.0

0.0

0.0

0.0

-294

Table 5. New coefficientsof an unknown simulateddata obtained afteralignment

COEFFICIENT

A. COEFF. OF X=

B, COEFF. OF Y_

C. COE_. OF Z2

F, COEFF. OF YZ

G, COEFF. OF XZ

H, COEFF. OF XY

P, COEFF. OF X

Q. COEFF. OF Y

R, COEFF. OFZ

D, CONSTANT

BEFORE

0D

2.O

1.0

-4.0

-4.0

OJ)

O.0

0.0

0.0

-4.0

AFTER ALIGNMENT

2.O

-4.O

-I.0

O.0

0.0

0.0

O.0

0,0

0,0

-4.O

Table 6. New coefficients of an unknown simulated data obtained after alignment.



COEFFICIENT BEFORE AFTER ALIGNMENT

A, COEFF. OF X 2

B, COEFF. OF Y:

C, COEFF. OF Z:

F, COEFF. OF YZ

0.0

0.0

0.0

- 1.414

G, COEFF. OF XZ

H, COEFF. OF XY

P, COEFF. OF X

Q, COEFF. OF Y

R, COEFF. OF Z

D, CONSTANT

0.0

1.0

0.0

0.0

0.0

-3.0

3.0

0.0

-3.0

0.0

0.0

0.0

0.0

0.0

0.0

-3.0

Table 7. New coefficients of an unknown simulated data obtained after alignment.



6. CONCLUSIONS

We have presented a new approach based on two-dimensional analytic geometry

to recognize a series of three-dimensional objects. Among the various three-

dimensional objects considered are the hyperboloids of one and two sheets, the ellip-

soids, the spheres, the circular and elliptical quadric cones, the circular and elliptical

cylinders, the parabolic and hyperbolic cylinders, the elliptic and hyperbolic para-

boloids, and the parallelepipeds. Our proposed method utilizes a two-dimensional

discriminant which is a measure for distinguishing curves. Instead of evaluating the

ten generated coefficients and attempting to recognize the surface from its quadric

representation, we can identify the quadrics using the information resulting from the

intersection of the surface with different planes. If the surface is one of those listed

above, there are five possible two-dimensional curves that may result from such inter-

sections: (i) a circle, (ii) an ellipse, (iii) a parabola, (iv) a hyperbola, and (v) a line.

Thus, a feature or pattern vector with five independent components can be formed for

characterizing each of the surfaces. Although all of the quadric surfaces considered

have been symmetric, our recognition system can be extended to other three-

dimensional objects. To recognize complex objects a suitable segmentation technique

has been developed and implemented for the isolation of each individual surface.

Some of the advantages of our recognition scheme are listed below:

(1) Recognition systems using the curvature approach (evaluation of the mean and

Gaussian curvatures) are very computationally

really describe the quadric surface in question.

computationally efficient. All of the quadric

described in terms of their dimensions.

(2)

intensive. These approaches never

Our proposed recognition system is

surfaces are recognized as well as

Unlike some of the traditional techniques which perform well only on simulated,



Our recognitionsystemis shownto work for both simulatedandreal rangedata.

(3) The best-fitplot and the curvatureanalysistechniques[24] usedfor analyzingpro-

cessedrange imagescan be used to determineperformancesof various laser range

mappers.

(4) The rotation alignment technique is a new method which systematicallyand

effectively eliminatesthe productterms and aligns the quadric surfacesin our desired

coordinatesystemthroughan iterativetechnique.

(5) Although intersectionsof surfaceswith planeshasbeen looked into before,

only in this researcha completeset of featuresfor the recognitionof all the quadric

surfaceshas been determined. Angular boundsdeterminedtheoretically have been

provedexperimentallyfor all of the quadricsurfaces.

The equationsof the planeswhich determinedistinct featurevectors for eachof

the quadric surfacesare very sensitiveto the quality of the digitized rangedata. In

casethe coefficient determiningalgorithmdoesnot perform as expected,errorsmight

beencounteredwhile forming thefeaturesets. Active sensorslike laserrangemappers

haveonly recently beendeveloped. Much improvementis expectedin the quality of

rangeimagesin the nearfuture. This will make thevariousrecognitionschemesmuch

more reliableand flexible.

The successfulperformanceof the segmentationschemewould enableto extend

our recognition system to recognizeirregular surfaceswhich are made up piece-by-

pieceof regularquadricsurfaces.



Appendix 1

Formulation of the Rotational Matrix and Determination of the New Quadric

Coefficients

Let (x,y,z) describe the coordinates of any point (Figure (al)) in our coordinate

system. As shown in Figure (a2), consider a rotation of angle o_ about the z axis, i.e.

in the xy-plane. Then the new coordinates in terms of the old are represented as

and

i.e., the rotation matrix is

x = x'cos_ + y'sinot

y = -x'sino_ + y'cosc_;

"cosot sins !]
-slnot cos_ .

0 0

Next, as shown in Figure (a3), consider a rotation about the x" axis by an angle ]3,

i.e., in the y'z plane, of the same point. The resultant coordinates and the old coordi-

nates are now related by the following equations:

y' = y"cos]3 + z'sin]3

and

where the rotation matrix is

z = -y"sin]3 + z'cosl3,

01RI_= cos]3 sin]3 .

-sin]3 cosl3.]



Finally as shownin Figure (a4),considera rotationabout the

i.e., in the x'z' plane, then

and

z' = z"cos7+ x"siny

y" axis by an angleY,

x' = -z"sin7 + x"cosT.

The rotation matrix for the abovetransformationis

Observingthat

we obtain thefollowing:

ICoS 0R,r = 1 .

I.siny 0 cosy_/

Ii) ,l::]= RaR B " 't

Lz )

and

x = x"(cos(xcos7 + sinotsinl3siny) + y"sinotcosl3 + z"(-sinycoso_ + cosysin(xsinl3),

y = x"(-cosysino_ + sinysinl3coso0 + y"cosl3cosc_ + z"(sinysinot + cosysinl3coso0

z = x"sinycosl3 - y"sinl3 + z"cosycosl3.

After substituting the new x, y, and z coordinates into Equation (1) (Section 3),

-2 -2 _,,2 ,, ,, ,, ,, ,, ,,
we get an entireset of new coefficientsfor x , y , z , y z , x z , x y , x", y",

and z".

These new coefficients are are as follows:
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• (x,y,z)

X

Y

Figure (al)

k, Z

i
Y

i :'r
l
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Y

Z

Z

_, f3

Y
"It

)-

Y

Figure (a2) Figure (a3)

_, Z

Z 1_"

7

.7
x

X

Y

Figure (a4)



a" = cos2y [a.cos2ct + b.sin2ct] + sin2_sin27 [a.sin2ct + b.cos20_]

+ 2sin_sin_sin_osctcos_, (a - b) + c.sin2ycos2_

+ sin2ct [h.sin2_sin2y] + sin2y [-f.sinctcos_l + g-cosotcos_

+ h'cos2ctsin_l - h'sin_lsin2o_ ]+ sin2_sin27 (f-coso_ + g-sint_) - h-sin20_cos2y.

b" = (a.sin2ct + b'cos2t_)cos2_ + c.sin2]3 + sin213 [-f-cost_ - g.sinct ]

+ h.sin2ctcos2_.

c" = sin27 (a-cos2_ + b.sin20t) + (a.sin2_ + b.cos20Ocos2_sin2_

+ 2sinasinl3sin_osotcosy (b - a) +'c.cos27cos2_ + sin2t_ [h.cos2Tsin2_ - h.sin2y]

+ cos2ysin2[3 [f.costx + g.sint_] + sin2y [f.sinctcos]3 - g.costxcos]3- h-cos2txsin[3].

2f"= [(b'cos2ot + a.sin2ct + h.sin2o_ -c)sin2_ + (2g.sinot + 2f'cosot)cos2[3]cosy

+ [((b - a)sin2ct - 2h'cos2o0cosl3 + (2g.cosot - 2f.sin00sin]3] siny.

2g"= sin27[-cos2ot(a- b.sin213)- sin2o_(_a.sin213 + b)+ c.cos213]

+ sin2yIsin2_(f'cosot + g.sinct) + h.sin2o_(1 + sin213)]

+ cos27[sin2ctsin13(a - b) + 2h'sinl3cos2o_ + cosl3(2g.cosct - 2f'sino0].

2h" = sin213sin_a.sin2ct + b.cos2ct - c + h.sin2o_] +cos2_sin_2g.sint_ + 2f'cosct]

+ cosl3cosT[sin2ct(a - b) + 2h.cos2t_] + sinl3cosT[2f'sint_ - 2g.cosct].

2p" = 2cosy [p-cosot - q'sinot] + 2sin_sin 7 [p'sint_ + q.cosot] + 2r'sinycos_.

2q" = 2cos13 [p.sinot + q.cost_] - 2r.sinl3.

2r" = 2cos_inl3 [p.sinct + q.cosct] + 2siny [-p'cost_ + q.sino_] + 2r-cos_cosl3.

We are now in a position to formulate

correspond to the directional cosines of the x, y,

The rotation matrix = RvRI3Ra,

a rotation matrix whose elements

and z axes of the rotated object.



where

and

Subsequently,

cos(x sino_ !]
-sino_ coso_ ,

0 0

o o1RIA= cos_ sin[3 ,

-sinl3 coslAJ

[CoS_°o°_1Rq,= 1 .

LsinT 0 COSTA

R.rRIARa =

where

os_osy- sino_sinl3sin y cosysino_ + sinTsinl3cosa

-cosl_sino_ cos[_coso_
inycoso_ + COSTsinctsin[3 sino_siny-cosysinl3cosct

-sinTcosl31

sinl3 1,

cos_osT]

n n n

(x= y'_, [3 = _-'J3i, and T = _Ti.
i=l i=l i=l

tion terms go to zero in the limit.

n corresponds to the iteration where all the rota-
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